THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5510 Foundation of Advanced Mathematics 2017-2018 Suggested Solution to Final Exmaination

1. Find an integer x such that

$$x \equiv 14 \pmod{18}$$
$$x \equiv 5 \pmod{25}$$

Ans:

By extended Euclidean Algorithm, we have

$$18 \times 7 + 25 \times (-5) = 1$$

By Chinese Remainder Theorem, $x \equiv 14 \times [25 \times (-5)] + 5 \times (18 \times 7) \equiv -1120 \equiv 230 \pmod{450}$.

2. (a) Let n be a positive integer.

Show that if $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then $ab \equiv a'b' \pmod{n}$.

(b) Find $\varphi(18)$, where φ is the Euler's phi function.

Hence, or otherwise, find the remainder if 11^{200} is divided by 18.

(c) Find an integer x such that $0 \le x < 79$ and $23x \equiv 3 \pmod{79}$.

Ans:

(a) By assumption, we have a = a' + nk and b = b' + np for some integers k and p. Then,

$$ab = (a'+nk)(b'+np)$$
$$= a'b'+n(kb'+pa'+npk)$$

where kb' + pa' + npk is an integer. Therefore, $ab \equiv a'b' \pmod{n}$.

(b) The positive integers that is less than 18 and relatively prime to 18 are 1, 6, 7, 11, 13 and 17, so $\varphi(18) = 6$.

Then, $11^{200} \equiv (11^6)^{33} \times 11^2 \equiv 1 \times 121 \equiv 13 \pmod{18}$.

(c) By extended Euclidean Algorithm, we have

$$7 \times 79 - 24 \times 23 = 1$$

Then,

$$21 \times 79 - 72 \times 23 = 3$$
$$23 \times (-72) \equiv 3 \pmod{79}$$
$$23 \times 7 \equiv 3 \pmod{79}$$

Therefore, x = 7.

3. Let A, B and C be sets. Suppose that $f: B \to C$ and $g: A \to B$ are two bijective functions. Show that $f \circ g: A \to C$ is a bijective function.

Let $x_1, x_2 \in A$ such that $(f \circ g)(x_1) = (f \circ g)(x_2)$, i.e. $f(g(x_1)) = f(g(x_2))$.

Since f is injective, $g(x_1) = g(x_2)$. Then, since g is injective, $x_1 = x_2$.

Therefore $f \circ g$ is injective.

Let $y \in C$. Since f is surjective, there exists $w \in B$ such that f(w) = y.

Also, since g is surjective, there exists $x \in A$ such that g(x) = w.

Then, we have $(f \circ g)(x) = f(g(x)) = f(w) = y$ and so $f \circ g$ is surjective.

- 4. (a) By constructing an explicit bijective function $f : [0, 1) \to (0, 1)$, show that both sets [0, 1) and (0, 1) have the same cardinality.
 - (b) Show that both sets $(-1,0) \cup (0,1)$ and (-1,1) have the same cardinality.
 - (c) Let $a, b, c \in \mathbb{R}$ such that a < b < c. Show that the sets $(a, b) \cup (b, c)$ and (a, c) have the same cardinality.

Ans:

(a) Let $a_n = 1 - \frac{1}{2^n}$ where n = 0, 1, 2, ... Define a function $f : [0, 1) \to (0, 1)$ by

$$f(x) = \begin{cases} a_{n+1} & \text{if } x = a_n; \\ \\ x & \text{otherwise.} \end{cases}$$

Then, f is a bijective function and so [0,1) and (0,1) have the same cardinality.

(b) Let $g: (-1,1) \to (-1,0) \cup (0,1)$ be a function defined by

$$g(x) = \begin{cases} f(x) & \text{if } 0 \le x < 1; \\ \\ x & \text{if } -1 < x < 0. \end{cases}$$

By the construction of the function and the fact that f is a bijective function, g is also a bijective function. Therefore, both sets $(-1, 0) \cup (0, 1)$ and (-1, 1) have the same cardinality.

(c) Let $h_1: (-1,0) \cup (0,1) \to (a,b) \cup (b,c)$ be a function defined by

$$h_1(x) = \begin{cases} b + (c - b)x & \text{if } 0 < x < 1; \\ \\ b + (b - a)x & \text{if } -1 < x < 0. \end{cases}$$

Also, let $h_2: (-1,1) \to (a,c)$ be a function defined by $h_2(x) = c + \frac{(c-a)(x-1)}{2}$. Note that both h_1 and h_2 are bijective functions. Then, $h_1 \circ g \circ h_2^{-1}$ is a bijective function from (a,c) to $(a,b) \cup (b,c)$ which shows that the sets $(a,b) \cup (b,c)$ and (a,c) have the same cardinality.

5. (a) Let A be a subset of \mathbb{R} . State the definition of a cluster point of A.

- (b) Let A be a subset of \mathbb{R} , c be a cluster point of A, and $f: A \to \mathbb{R}$ be a function. State the definition of $\lim_{x \to a} f(x) = L$, where L is a real number.
- (c) By using the definition stated in (b), show that
 - i. $\lim_{x \to 3} 2x + 1 = 7.$
 - ii. $\lim_{x \to c} x^2 + x = c^2 + c$, where c is a real number.

Ans:

(a) Let A be a subset of \mathbb{R} . c is a cluster point of A if for all $\delta > 0$, there exists $x \in A \setminus \{c\}$ such that $|x - c| < \delta$.

(b) $\lim_{x\to c} f(x) = L$ if for all $\epsilon > 0$, there exists $\delta > 0$ such that for all $x \in A$ with $0 < |x - c| < \delta$, we have $|f(x) - L| < \epsilon$.

(c) i. Let $\epsilon > 0$, take $\delta = \frac{\epsilon}{2} > 0$. Then, for all $0 < |x - 3| < \delta = \frac{\epsilon}{2}$, we have

$$\begin{aligned} &-\frac{\epsilon}{2} < x-3 < \frac{\epsilon}{2} \\ &-\epsilon < 2x-6 < \epsilon \\ &-\epsilon < (2x+1)-7 < \epsilon \\ &|(2x+1)-7| < \epsilon \end{aligned}$$

Therefore, $\lim_{x \to 3} 2x + 1 = 7$.

ii. Let
$$\epsilon > 0$$
, take $\delta = \min\{1, \frac{c}{2|c|+2}\} > 0$.
Then, for all $0 < |x-c| < \frac{c}{2|c|+2}$, we have

$$|x-c| < \delta \le \frac{\epsilon}{2|c|+2}$$

and

$$\begin{split} |x-c| &< \delta \leq 1 \\ -1 &< x-c < 1 \\ -2|c|-2 &\leq 2c-1 < x+c+1 < 2c+2 \leq 2|c|+2 \\ |x+c+1| &< 2|c|+2 \end{split}$$

Thus,

$$\begin{aligned} |(x^{2} + x) - (c^{2} + c)| &= |x - c||x + c + 1| \\ &< \frac{\epsilon}{2|c| + 2} \cdot (2|c| + 2) \\ &= \epsilon \end{aligned}$$

Therefore, $\lim_{x \to c} x^2 + x = c^2 + c$.

6. (a) Let A be a subset of \mathbb{R} and c is a cluster point of A.

Suppose that $f, g: A \to \mathbb{R}$ are functions such that f is bounded on A, i.e. there exists M > 0 such that $|f(x)| \le M$ for all $x \in A$, and $\lim_{x \to c} g(x) = 0$. Show that $\lim_{x \to c} f(x)g(x) = 0$.

(b) By using the result in (a), evaluate $\lim_{x \to 0} x^2 \cos(\frac{1}{x})$.

Ans:

(a) Let $\epsilon > 0$. Given that $\lim_{x \to c} g(x) = 0$, so there exists $\delta > 0$ such that for all $x \in A$ with $0 < |x - c| < \delta$, we have $|g(x) - 0| < \frac{\epsilon}{M}$. Then,

$$|f(x)g(x) - 0| \le M|g(x)| < M \cdot \frac{\epsilon}{M} = \epsilon$$

Therefore, $\lim_{x \to c} f(x)g(x) = 0.$

(b) By considering c = 0, f(x) = cos(¹/_x) and g(x) = x². Then, both f and g are functions defined on ℝ\{0}.

Note that 0 is a cluster point of $\mathbb{R}\setminus\{0\}$, $|f(x)| \leq 1$ for all $x \in \mathbb{R}\setminus\{0\}$ and $\lim_{x\to 0} g(x) = 0$. Therefore, by the result in (a), we have $\lim_{x\to 0} x^2 \cos(\frac{1}{x}) = 0$.

- 7. (a) Let $m, n \in \mathbb{N}$. State the definition of $m \leq n$.
 - (b) Let $m, n \in \mathbb{N}$. Prove that if $m \leq n$, then $m^+ \leq n^+$, where $m^+ = m \cup \{m\}$ and $n^+ = n \cup \{n\}$ are successor sets of m and n respectively.
 - (c) Let $m, n, p \in \mathbb{N}$. Prove that if $m \leq n$, then $m + p \leq n + p$. (Hint: Using mathematical induction on p.)

Ans:

- (a) $m \le n$ if m is a subset of n.
- (b) Suppose that $m \leq n$, i.e. $m \subseteq n$.

Let $x \in m^+ = m \cup \{m\}$. Then, there are two cases:

- Case 1: $x \in m$, then $x \in m \subseteq n$ and so $x \in n^+$.
- Case 2: $x \in \{m\}$, i.e. x = m, then $x \subseteq n \subsetneq n^+$. Therefore, $x \in n^+$.

We have $m^+ \subseteq n^+$ and so $m^+ \leq n^+$.

(c) When p = 0, it is obvious that $m + 0 = m \le n = n + 0$.

Assume that for a natural number p, if m and n are natural numbers such that $m \le n$, then we have $m + p \le n + p$. Then, by (b) and the definition of addition,

$$m + p^+ = (m + p)^+ \le (n + p)^+ = n + p^+.$$

By mathematical induction, let m, n and p be natural numbers, if $m \leq n$, then we have $m + p \leq n + p$.

8. Suppose that + and \cdot are usual addition and multiplication on \mathbb{N} respectively.

Define a relation \sim on $\mathbb{N} \times \mathbb{N}$ such that $(m, n) \sim (p, q)$ if and only if m + q = p + n.

An addition \boxplus on $\mathbb{N}\times\mathbb{N}$ is defined by

$$(m,n) \boxplus (p,q) = (m+p, n+q)$$

and a multiplication \boxdot on $\mathbb{N} \times \mathbb{N}$ is defined by

$$(m,n) \boxdot (p,q) = (m \cdot p + n \cdot q, n \cdot p + m \cdot q).$$

- (a) Show that \sim defines an equivalence relation.
- (b) The set of all integers \mathbb{Z} is defined as $(\mathbb{N} \times \mathbb{N}) / \sim$.
 - i. Show that the addition \boxplus and the multiplication \boxdot on $\mathbb{N} \times \mathbb{N}$ induces an addition \oplus and an multiplication \odot on \mathbb{Z} respectively.
 - ii. The integers -1, 0 and 1 are defined as [(0,1)], [(0,0)] and [(1,0)] respectively. Show that $(-1) \oplus 1 = 0$, $(-1) \odot (-1) = 1$ and $0 \odot x = 0$ for all integers x.
 - iii. Let $f : \mathbb{N} \to \mathbb{Z}$ be a function defined by f(a) = [(a, 0)]. Show that f is an injective function and $f(a \cdot b) = [(a, 0)] \odot [(b, 0)]$.

Ans:

- (a) Since m + n = m + n, we have $(m, n) \sim (m, n)$.
 - If $(m, n) \sim (p, q)$, then m + q = p + n and so p + n = m + q which implies $(p, q) \sim (m, n)$.

• If $(m,n) \sim (p,q)$ and $(p,q) \sim (r,s)$, then m+q=p+n and p+s=r+q. We have

$$(m+q) + (p+s) = (p+n) + (r+q)$$

 $(m+s) + (p+q) = (r+n) + (p+q)$
 $m+s = r+n$

Therefore, $(m, n) \sim (r, s)$.

By the above, \sim is an equivalence relation.

(b) i. • Claim: If $(m, n) \sim (m', n')$ and $(p, q) \sim (p', q')$, then $(m, n) \boxplus (p, q) \sim (m', n') \boxplus (p', q')$. We have m + n' = m' + n and p + q' = p' + q. Then,

$$(m+n') + (p+q') = (m'+n) + (p'+q)$$

$$(m+p) + (n'+q') = (m'+p') + (n+q)$$

Therefore, $(m, n) \boxplus (p, q) \sim (m', n') \boxplus (p', q')$ and the addition \boxplus on $\mathbb{N} \times \mathbb{N}$ induces an addition \oplus on \mathbb{Z} .

• Claim: If $(m, n) \sim (m', n')$ and $(p, q) \sim (p', q')$, then $(m, n) \boxdot (p, q) \sim (m', n') \boxdot (p', q')$. We have m + n' = m' + n and p + q' = p' + q. Then,

$$\begin{array}{lll} m \cdot p + n \cdot q + n' \cdot p' + m' \cdot q' &=& m \cdot p' + n \cdot q + n' \cdot p' + m' \cdot q' + m \cdot q \\ &=& m' \cdot p' + n \cdot q + n \cdot p' + m' \cdot q' + m \cdot q \\ &=& m' \cdot p' + n \cdot q' + n \cdot p + m' \cdot q' + m \cdot q \\ &=& m' \cdot p' + n' \cdot q' + n \cdot p + m \cdot q' + m \cdot q \\ &=& m' \cdot p' + n' \cdot q' + n \cdot p + m \cdot q' + m \cdot q \\ &=& m' \cdot p' + n' \cdot q' + n \cdot p + m \cdot q + m \cdot q' \end{array}$$

Therefore, $(m, n) \boxdot (p, q) \sim (m', n') \boxdot (p', q')$ and the multiplication \boxdot on $\mathbb{N} \times \mathbb{N}$ induces a multiplication \odot on \mathbb{Z} .

ii. •

•

$$(-1) \oplus 1 = [(0,1)] \oplus [(1,0)]$$
$$= [(0,1) \boxplus (1,0)]$$
$$= [(0+1,1+0)]$$
$$= [(1,1)]$$
$$= [(0,0)]$$
$$= 0$$

$$(-1) \odot (-1) = [(0,1)] \odot [(0,1)]$$

= $[(0,1) \boxdot (0,1)]$
= $[(0 \cdot 0 + 1 \cdot 1, 1 \cdot 0 + 0 \cdot 1)]$
= $[(1,0)]$
= 1

• Let $x = [(a, b)] \in \mathbb{Z}$, where $a, b \in \mathbb{N}$.

$$\begin{array}{rcl} 0 \odot x & = & [(0,0)] \odot [(a,b)] \\ & = & [(0,0) \boxdot (a,b)] \\ & = & [(0 \cdot a + 0 \cdot b, 0 \cdot b + 0 \cdot a)] \\ & = & [(0,0)] \\ & = & 0 \end{array}$$

iii. Suppose that f(a) = f(b), then [(a, 0)] = [(b, 0)] which means $(a, 0) \sim (b, 0)$. It implies that a + 0 = b + 0, i.e. a = b. Therefore, f is an injective function. Also, $f(a \cdot b) = [(a \cdot b, 0)] = [(a \cdot b + 0 \cdot 0, b \cdot 0 + a \cdot 0)] = [(a, 0) \Box (b, 0)] = [(a, 0)] \odot [(b, 0)]$.