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1. Find an integer x such that

14(mod 18)
= 5(mod25)

8
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8
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Ans:

By extended Euclidean Algorithm, we have
18 X T+ 25 x (—=5) =1
By Chinese Remainder Theorem, x = 14 x [25 x (=5)] + 5 x (18 x 7) = —1120 = 230(mod 450).

2. (a) Let n be a positive integer.
Show that if @ = a/(modn) and b = b’ (modn), then ab = a’t/(mod n).
(b) Find ¢(18), where ¢ is the Euler’s phi function.
Hence, or otherwise, find the remainder if 112%° is divided by 18.
(c) Find an integer x such that 0 <z < 79 and 23z = 3(mod 79).
Ans:

(a) By assumption, we have a = o’ + nk and b = b’ + np for some integers k and p. Then,

ab

(a' + nk)(b' + np)
= a'b +n(kb + pd’ + npk)

where kb’ + pa’ + npk is an integer. Therefore, ab = a’b'(mod n).

(b) The positive integers that is less than 18 and relatively prime to 18 are 1, 6, 7, 11, 13 and 17,
so ¢(18) = 6.
Then, 112°0 = (116)33 x 112 = 1 x 121 = 13(mod 18).

(¢) By extended Euclidean Algorithm, we have

TXxT79—-24%x23=1

Then,
21 x79-72%x23 = 3
23 x (=72) = 3(modT9)
23x7 = 3(mod79)

Therefore, x = 7.

3. Let A, B and C be sets. Suppose that f: B — C and g : A — B are two bijective functions.

Show that fog: A — C is a bijective function.

Let x1, 22 € A such that (f o g)(x1) = (f o g)(x2), L.e. f(g(z1)) = f(g(x2)).



Since f is injective, g(z1) = g(x2). Then, since g is injective, 1 = x5.
Therefore f o g is injective.
Let y € C. Since f is surjective, there exists w € B such that f(w) = y.
Also, since g is surjective, there exists € A such that g(z) = w.
Then, we have (f o g)(z) = f(g(z)) = f(w) =y and so f o g is surjective.
4. (a) By constructing an explicit bijective function f : [0,1) — (0, 1), show that both sets [0, 1) and
(0,1) have the same cardinality.
(b) Show that both sets (—1,0) U (0,1) and (—1,1) have the same cardinality.

(c) Let a,b,c € R such that a < b < ¢. Show that the sets (a,b) U (b, c) and (a, ¢) have the same

cardinality.

Ans:

1
(a) Let ap, =1— on where n =0,1,2,.... Define a function f :[0,1) — (0,1) by

Gnt1  if x = ay;
fz) =
x  otherwise.
Then, f is a bijective function and so [0,1) and (0, 1) have the same cardinality.

(b) Let g: (—1,1) — (—1,0) U (0,1) be a function defined by

flx) if 0<z<I;

x if —-1<z<0.

By the construction of the function and the fact that f is a bijective function, g is also a
bijective function. Therefore, both sets (—1,0) U (0,1) and (—1,1) have the same cardinality.

(c) Let hy : (=1,0) U (0,1) — (a,b) U (b,c) be a function defined by

b+ (c—bx if 0<z<l,;
ha(x) =
b+(b—a)r if —1<z<0.

(c—a)(z—1)
2
both h; and hs are bijective functions. Then, h;ogo h2_1 is a bijective function from (a,c) to

(a,b) U (b, ¢) which shows that the sets (a,b) U (b, ¢) and (a, ¢) have the same cardinality.

Also, let hy : (=1,1) — (a,c) be a function defined by ha(z) = ¢+ . Note that

5. (a) Let A be a subset of R. State the definition of a cluster point of A.
(b) Let A be a subset of R, ¢ be a cluster point of A, and f: A — R be a function.
State the definition of igrnc f(z) = L, where L is a real number.
(¢) By using the definition stated in (b), show that
i ;1_% 2e+1=".

ii. lim 2® + x = ¢® 4 ¢, where c¢ is a real number.
r—rc

Ans:

(a) Let A be a subset of R. ¢ is a cluster point of A if for all § > 0, there exists © € A\{c} such
that |z —¢| < 4.



(b) lim f(x) = L if for all € > 0, there exists ¢ > 0 such that for all z € A with 0 < |z —¢| < 4,

Tr—cC

we have |f(z) — L| < e.

(¢) i Lete>0,take6:§>0.

Then, for all 0 < [z — 3| < 0 = §, we have
€ €
_Z _3< =
2<$ <2
—e<2r—-6<c¢
—e<(2r+1)-T7<e
|2z 4+1) -7 <e
Therefore, lim 2z 4+ 1 =7.
z—3
ii. Let € > 0, take § = min{1, m} > 0.
Then, fora110<|ac—c|<;,wehave
2|c| +2
€
—cl <0<
v —d<os53
and
|t —c] <d<1
—-l<z—-c<1
2] -2<2c-1<a4+c+1<2c+2<2cl+2
o+ c+ 1] < 2| +2
Thus,
((@® +2) = (P +e)| = |z—clz+c+1]
€
< - (2 2
ez T2

€
Therefore, lim 22 + z = ¢ + c.
r—c

6. (a) Let A be a subset of R and ¢ is a cluster point of A.
Suppose that f,g: A — R are functions such that f is bounded on A, i.e. there exists M > 0
such that |f(x)| < M for all x € A, and };me g(z) =0.
Show that i;mc f(z)g(z) = 0.

1
(b) By using the result in (a), evaluate lin% z? cos(=).
T—r X

Ans:
(a) Let € > 0. Given that lim g(z) = 0, so there exists § > 0 such that for all z € A with
Tr—c
0 < |z —c| <9, we have |g(xz) — 0] < ﬁ Then,

€

|f(2)g(x) = 0] < Mlg(w)| < M - -

€
Therefore, lim f(z)g(x) = 0.
Tr—c

1
(b) By considering ¢ =0, f(x) = cos(;) and g(z) = 2. Then, both f and g are functions defined
on R\{0}.
Note that 0 is a cluster point of R\{0}, |f(z)| <1 for all z € R\{0} and lim,_,q g(x) = 0.

1
Therefore, by the result in (a), we have lim 22 cos(—) = 0.
z—0 x



7. (a) Let m,n € N. State the definition of m < n.

(b) Let m,n € N. Prove that if m < n, then m™ < n*, where m™ = m U {m} and n™ = nU {n}

are successor sets of m and n respectively.
(c) Let m,n,p € N. Prove that if m < n, then m+p <n+p.
(Hint: Using mathematical induction on p.)

Ans:

(a) m < nif m is a subset of n.

(b) Suppose that m < n, i.e. m Cn.

Let z € m*™ = mU {m}. Then, there are two cases:

e Case l: x€m,thenzemCnandsoz €n™.
e Case 2: x € {m}, i.e. z =m, then x Cn C nt. Therefore, z € n*.
We have mt C nT and so mt < n™.
(¢) When p =0, it is obvious that m +0=m <n =n+0.

Assume that for a natural number p, if m and n are natural numbers such that m < n, then

we have m + p < n+ p. Then, by (b) and the definition of addition,
m+pt=(m+p) <(nt+p)"=n+tp".

By mathematical induction, let m, n and p be natural numbers, if m < n, then we have
m+p<n-+p.
8. Suppose that + and - are usual addition and multiplication on N respectively.
Define a relation ~ on N x N such that (m,n) ~ (p,q) if and only if m + ¢ =p + n.
An addition B on N x N is defined by

(m,n) B (p,q) = (m+p,n+q)
and a multiplication [J on N x N is defined by
(m,n) B (p,q) =(m-p+n-qgn-p+m-q).

(a) Show that ~ defines an equivalence relation.

(b) The set of all integers Z is defined as (N x N)/ ~.
i. Show that the addition H and the multiplication [J on N x N induces an addition ¢ and
an multiplication ® on 7Z respectively.
ii. The integers —1, 0 and 1 are defined as [(0, 1)], [(0,0)] and [(1,0)] respectively.
Show that (—=1)® 1 =0, (1) ®(—1) =1 and 0 ©® z = 0 for all integers x.
iii. Let f: N — Z be a function defined by f(a) = [(a,0)].
Show that f is an injective function and f(a - b) = [(a,0)] ® [(b,0)].

(a) e Since m +mn =m+n, we have (m,n) ~ (m,n).

o If (m,n) ~ (p,q), then m+ ¢ = p+n and so p+n = m+ g which implies (p,q) ~ (m,n).



o If (m,n) ~ (p,q) and (p,q) ~ (r,s), then m +¢q=p+n and p+ s =r+ q. We have

(m+q)++s) = (p+n)+(r+q
(m+s)+p+q = (r+n)+{@+q)
m+s = r+mn

Therefore, (m,n) ~ (r, s).
By the above, ~ is an equivalence relation.
(b) i. e Claim: If (m,n) ~ (m/,n') and (p,q) ~ (p',¢'), then (m,n)B(p, q) ~ (m/,n B, ).
We have m +n' =m’ +n and p+ ¢ = p’ + q. Then,

(m+n")+(p+q) (m'+n)+( +9q)

(m+p)+ ' +4¢) = (m'+p)+(n+9q

Therefore, (m,n) B (p,q) ~ (m',n')H (p’, ¢’) and the addition B on N x N induces an
addition @ on Z.

e Claim: If (m,n) ~ (m/,n’) and (p,q) ~ (p', '), then (m,n)H(p,q) ~ (m',n)2(p', ¢).
We have m +n' =m’ +n and p+ ¢ = p’ + q. Then,

m-ptn-gen -p+m ¢ +m-q m-p +n-g+n -p+m ¢ +m-
= m-p4+n-qgtn-p+m-¢d+m-

= m-p+n-¢d+n-p+m ¢ +m-

KRR Q

= m-p+n-¢d+n-p+m-¢+m-

~

= mlp/+n/q/+np+mq+mq
mp+nq+n/p/+m'q/ — m,p/+n/q/+np+mq
Therefore, (m,n)H(p, q) ~ (m’,n')E(p’, ¢') and the multiplication [ on N x N induces

a multiplication ® on Z.

ii. e

(&1 = [(0,1)]&[(1,0)]
= [(0’ 1) B (1’ 0)]
= [(0+1,1+0)]
= [(1,1)]
= [(O’O)]
= 0

(-1)o(=1) = [(0,D1]e[0,1)]
= [(0,1)2(0,1)]
= [(0 0O+1-1,1-040- 1)]
= [(1,0)]
= 1



e Let z = [(a,b)] € Z, where a,b € N.

0oz = [(0,0]@ (a,b)]
= [(0,0) B (a,b)]
= [(0-a+0-b,0-b+0-a)]
= [(0,0)]
= 0

iii. Suppose that f(a) = f(b), then [(a,0)] = [(b,0)] which means (a,0) ~ (b,0). It implies
that a +0 =040, i.e. @ =b. Therefore, f is an injective function.
Also, f(a-b) = [(a-b,0)] = [(a-b+0-0,b-0+a-0)] = [(a,0) B (5,0)] = [(a,0)] © [(5,0)].



